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Electronic excitation transport in disordered infinite volume systems 

by M. D. EDIGER and M. D. FAYER 
Department of Chemistry, 

Stanford University, Stanford, California 94305, U.S.A. 

An account of recent theoretical and experimental advances in the field of 
excitation transport in disordered systems is presented. First the problem of 
excitation transport among chromophores (donors) randomly distributed in 
solution is discussed. Picosecond fluorescence mixing experiments demonstrate 
that the recent nonperturbative theory for this type of system is accurate at all times 
and concentrations examined. Next we consider systems with two types of 
chromophores, donors and traps, randomly distributed in solution. Experiments 
and theory describe the transport and trapping of excitations over the full range of 
donor and trap concentrations. These ideas and picosecond transient grating 
experiments are used to explain the mechanism for fluorescence quenching in 
concentrated dye solutions, which is shown to be due to excitation transport and 
trapping by dimers of dye molecules. Finally, the problems of excitation transfer 
among molecules randomly distributed on a lattice (rather than in a solution) is 
discussed. An accurate nonperturbative theory is employed to calculate transport 
observables. 

1. Introduction 
During the past four years, rapid advances have been made in both our theoretical 

and experimental understanding of the transport of electronic excitations among 
molecules which are not in regular arrays. The transport of electronic excitations has 
been studied extensively in a wide variety of molecular materials: mixed crystals 
(Gentry and Kopelman 1983, Gentry 1983, Kopelman 1981, Smith et al. 1977, Colson 
et al. 1977), amorphous solids (Klafter and Jortner 1977), liquids (Gochanour and 
Fayer 1981, Miller et al. 1983, Millar et al. 1981, Rehm and Eisenthal 1971, Porter and 
Tredwell 1978, Craver and Knox 1971, Hemenger and Perlstein 1973), micelles (Ediger 
et al. 1984, Kenney-Wallace et al. 1975, Koglin et al. 1981), polymers (Klopffer 1981, Ng 
and Guillet 1982, Frank et al. 1980, Anderson et al. 1980, Gelles and Frank 1982) and 
biological systems such as the photosynthetic unit (Pearlstein 1964, Markvart 1978, 
Porter 1978, Moog et al. 1984). 

Excitation transfer is caused by interactions between resonant energy levels on 
different molecules, one of which is in an electronic excited state (Forster 1948). These 
interactioRs can cause the excitation to ‘hop’ from the originally excited molecule to  
another molecule, without photon emission. The interaction energy, and hence the 
excitation transfer rate, decreases rapidly as the molecules get farther apart. Even so, 
excitation transport between molecules can be significant for intermolecular separ- 
ations greater than 100A. 

Current research in excitation transport focuses on using the well understood 
pairwise interactions of chromophores to describe the dynamics of systems with many 
interacting molecules. The bulk of theoretical and detailed experimental work has been 
directed toward pure crystals since the symmetry properties of the crystal lattice 
provide considerable aid in reducing the difficulties associated with the many-body 
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208 M .  D. Ediger and M .  D. Fayer 

problem (Davydov 1971, Burland et al. 1977 a, b, Kenkre and Knox 1974 a, b, Grover 
and Silbey 1970, 1971). In materials other than pure crystals, the molecules of interest 
are solutes in some type of a solid or liquid solution where the major component, i.e., 
the host species, does not directly participate in the transfer process. In solutions, the 
molecules have a distribution of intermolecular distances and since the intermolecular 
interactions responsible for excited-state transport are distance dependent (Forster 
1948), a distribution of transfer rates and pathways exists. 

The distribution of transfer rates and pathways which exist in a disordered system 
makes a theoretical description of the excitation dynamics difficult. However, rigorous 
theoretical and experimental investigation of such systems yields insights into the 
fundamental nature of their dynamics. In addition, detailed understanding of 
excitation transport provides a method for determining the spatial configuration 
(Ediger et al. 1984, Ediger and Fayer 1983) or other properties of the chromophores in a 
system (Moog et al. 1984). 

In this article a number of systems which have been studied recently will be 
discussed from a theoretical and experimental perspective. The systems discussed here 
are all large enough to be taken as infinite in extent. However, there are a variety of 
interesting systems in which chromophores are contained in a volume sufficiently small 
that energy transport properties are significantly affected by the limited size of the 
system. Such finite volume systems include isolated polymer coils containing 
chromophores, small aggregates of coils in polymer blends, micelles containing dye 
molecules, and photosynthetic units. A recent review article discusses progress in the 
study of excitation transport in these systems (Ediger and Fayer 1984). 

The nature of excitation transport among chromophores (donors) distributed 
randomly in solution (Gochanour et al. 1979) is addressed in Section 3. This is a classic 
problem treated by Forster (1948) over 30 years ago. Forster simplified the complex 
problem of the disordered system by taking the donors to be equally spaced at the 
average spacing for a given donor concentration. Excitation transport within this 
approximation was shown to be diffusive, i.e., the mean-square-displacement of the 
excitation increases linearly in time. However, work in the last few years has shown that 
this is not an accurate description of excitation transport dynamics. Transport is not 
diffusive (Gochanour et al. 1979, Haan and Zwanzig 1978). Picosecond fluorescence 
mixing experiments (Gochanour and Fayer 1981) on rhodamine 6G in solution 
demonstrate that recent theoretical advances provide an accurate and comprehensive 
description of excitation transport among randomly distributed donors in an infinite 
solution. The new theory employs a diagrammatic approach to the solution of the 
master equation for this problem (Gochanour et al. 1979). This approach is very 
powerful and has been extended to other problems (Loring et al. 1982 a, b, 1983 a, b, 
1984a, b, Parson 1983, Frederickson et al. 1983 a, b, 1984). 

Transport and trapping are then considered. The transport of electronic excitations 
in solutions containing traps was also addressed by Forster ( 1  949). Trapping of 
electronic excitations is responsible for phenomena such as sensitized luminescence in 
crystals and solutions (Dexter 1953) and sensitized photochemistry such as photosyn- 
thesis (Pearlstein 1964, Markvart 1978, Porter 1978). The study of transport and 
trapping dynamics has become an important tool for investigating biological (Haas 
et al. 1975, Dale and Eisinger 1976) and polymer systems (Klopffer 1981, Frank 
et al. 1980). Forster considered solutions containing two solute species: donor 
molecules and traps. An electronic excitation could be transferred from donor to trap 
via a resonant dipole-dipole interaction. (Subsequently the work was extended to 
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Electronic excitation transport 209 

higher multipole and exchange interactions (Dexter 1953, Inokuti and Hirayama 
1965)). Forster treated the case in which the trap concentration is much greater than the 
donor concentration. Each donor is assumed to interact only with an ensemble of 
neighbouring traps, so transport from one donor to another is neglected. Neglect of 
donordonor transport greatly simplifies the theoretical problem. 

By applying the diagrammatic technique developed for the donor-donor transport 
problem to donor-trap systems, it has been possible to obtain an accurate description 
of excitation transport dynamics for any concentration of donors and traps (Loring 
et al. 1982 a, b). Picosecond fluorescence mixing and transient grating experiments were 
employed to examine transport and trapping in solutions with a wide range of donor 
and trap concentrations (Miller et al. 1983). Comparisons of experiment and theory 
demonstrate that we have a comprehensive understanding of this. type of system. (The 
general problem of donor-donor transport prior to trapping can be handled for any 
form of the intermolecular interaction distance dependence. While electronic exci- 
tations are being discussed here, the theoretical results apply to electron transport as 
well.) 

In section 4, our understanding of transpoKt and trapping in solution is applied to 
the problem of fluorescence quenching in concentrated dye solutions. Picosecond 
transient grating experiments were performed on concentrated solutions of rhodamine 
6G (Lutz et al. 1981, Fayer 1982). It is shown that at high dye concentrations, three 
radiationless processes combine to quench fluorescence. They are donor-donor 
excitation transport, excitation trapping by dimers of dye molecules, and radiationless 
relaxation of the excited dimer. The onset of quenching with dye concentration is very 
rapid, having an approximately cubic dependence on concentration. 

In Section 5, the random solution theory for transport and trapping of excitations is 
extended to the case of molecules randomly substituted on a lattice (Loring et al. 
1983 a, b, 1984 a, b). In the lattice theory, the distance variable is no longer continuous. 
When performing ensemble averages over the possible positions of all particles, it is 
necessary to exclude configurations in which two molecules are on the same lattice site. 
This greatly increased the complexity of the problem. The diagrammatic theory for the 
lattice problem allows accurate results to be obtained from low concentration to a filled 
lattice. The theory can be used with any form of the transfer interaction and for any 
lattice type. The theory is compared to mixed crystal experiments (Gentry .and 
Kopelman 1983, Gentry 1983) and found to be in good agreement. 

The phenomenon of hopping transport in disordered systems is of considerable 
interest in many areas of solid state physics, chemistry, and biology. The net result of 
the work described in this series of articles is a greatly increased understanding of such 
processes and a strong foundation for further investigations. 

2. Experimental methods 
The picosecond experiments presented in the following sections are of two types: 

transient grating experiments, and fluorescence mixing experiments. These methods 
will be outlined in this sections. 

The transient grating experiment (Lutz et al. 1981) is illustrated schematically in 
figure 1. Two time-coincident laser excitation pulses of wavelength A cross at an angle 0 
inside the sample, creating an interference pattern with fringe spacing d given by 
d =$A sin ($6). Optical absorption results in a spatially varying, sinusoidal excited-state 
concentration distribution. Since the optical properties of the excited states and ground 
states differ, the periodic excited-state concentration distribution acts as a transient 
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DIFFRACTED 

Figure 1. Schematic illustration of the transient grating experiment. Interference between the 
incoming excitation pulses results in an oscillatory density of excited states, which Bragg- 
diffracts the subsequent probe pulse. The diffracted probe, which reflects the time 
evolution of the excited state population, is the signal. 

grating which diffracts a variably delayed probe laser pulse incident at the Bragg angle. 
The grating’s diffracting power decays with time due to various excited-state dynamical 
processes. The time dependence is determined by measurement of the diffracted probe 
pulse intensity versus probe-pulse delay. 

Transient grating (TG) experiments are used in our laboratory for several reasons. 
First, due to detection against a dark background, a TG experiment is inherently more 
sensitive than a probe pulse experiment. (In a probe-pulse experiment, a high-power 
pulse excites enough molecules into an excited state to change the absorption 
properties of the sample. A low-power probe pulse measures the absorption at various 
delay times after the initial excitation. The change in probe-pulse transmission with 
time yields the time dependence of the excited-state population.) In principle both 
experiments provide the same information about many processes of interest. Secondly, 
we found in probe-pulse experiments that highly concentrated samples required very 
large excitation power densities (small spot sizes) to achieve sufficient bleaching of the 
ground state population to give reasonable signal. These very high power densities 
resulted in anomalous power-dependent decays. In a TG experiment, because of its 
high sensitivity, large spot sizes can be used so the problem is avoided. In addition, the 
small fringe spacing associated with a TG experiment minimizes problems associated 
with reabsorption. Thirdly, there are a variety of measurements which can be made 
only by using transient grating approaches, e.g., exciton transport in pure crystals 
(Rose et al. 1984), phonon generation and detection (Fayer 1982, Nelson et al. 1982). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Electronic excitation transport 21 1 

The transient grating experimental setup is illustrated in figure 2. The system as 
shown is arranged to perform experiments on high-concentration dye solutions which 
exhibit fluorescence quenching (Lutz et al. lH1)  (Section 4). The laser is a continuously 
pumped Nd : YAG system which is acousto-optically Q-switched and mode-locked to 
produce trains of about 40 pulses at 1-06 pm with 1.3 mJ per pulse train. A single pulse is 
selected by a Pockels cell with an avalanche transistor driver and frequency tripled to 
yield a 10-pJ, 50-ps pulse at 355 nm. This is split into the two excitation pulses which are 
recombined at the sample. The rest of the YAG pulse-train is separated by a reflecting 
polarizer, frequency doubled, and used to synchronously pump a dye laser which is 
spectrally narrowed and tuned by two intracavity etalons. The dye laser is cavity 
dumped using another Pockels cell with avalanche transistor driver to give a 20-pJ, 30- 
ps pulse with a spectral width of 1 cm-'. Both Pockels cells are triggered optically by 

532nm 

3 x  
XTAL 

D Y E  L A 2  E R  

VOLTAGE a DELAY TIME 
X AXIS OF X Y  RECORDER &x,2 

X-Y RECORDER 

Figure 2. Transient grating experimental setup. A single 1.06 pm pulse is selected from the YAG 
mode-locked pulse train, frequency tripled to 355 nm, then split into two excitation pulses. 
These excitation pulses are then recombined at the sample, creating the transient grating. 
The remainder of the pulse-train is frequency doubled to synchronously pump a tunable 
dye laser whose output probes the grating after a variable delay. The Bragg-diffracted part 
of the probe pulse is the transient grating signal. PC, Pockels cell; P, polarizer; PD, 
photodiode; DC, dye cell; E, etalon; BS, beam-splitter. 
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212 M .  D .  Ediger and M .  D .  Fayer 

the I.R. pulse-train to fix the timing between them. The variably delayed dye-laser pulse 
probes the grating at the Bragg angle. The diffracted intensity, measured with a PIN 
photodiode and lock-in amplifier, is the signal. In other configurations of the system, 
the tunable dye pulse is beam-split to form the excitation pulses and one of the 
Nd : YAG harmonics is used as a probe, or the same colour is used for both excitation 
and probing. 

The same type of mode-locked Nd : YAG and dye-laser equipment is used in the 
fluorescence mixing experiments. In these experiments, a specific polarization compo- 
nent of the fluorescence decay is directly observed. The setup shown in figure 3 is 
configured for the experiments on excitation transport among dye molecules in 
solution (Gochanour and Fayer 198 1, Miller et al. 1983) (Section 3). A green single pulse 
at 532 nm excites the sample. The resulting fluorescence is filtered to remove scattered 
excitation light and focused into an RDP type-I sum-generating crystal where it 
overlaps with the path of a 1.06-pm single pulse selected from the YAG laser pulse-train 
by a Pockels cell and polarizer. The fluorescence reaching the sum crystal coincident in 
time with the 1.06-pm pulse mixes with that pulse to produce a short burst of U.V. light 
(- 365 nm). The U.V. intensity is proportional to the fluorescence intensity at that time. 
The sum crystal is oriented so that only the component of the fluorescence polarized 
parallel to the 1.06-pm polarization is summed. A hall-wave plate varies the 
polarization of the excitation pulse relative to the summing pulse, allowing both the 
parallel and perpendicular polarization components of the fluorescence (I (t) and Zl(t)) 
to be obtained. The excited-state lifetime can be determined directly by adjusting the 
relative polarization of the excitation and summing pulses to the magic angle (54.7") 

532nm Single Pulse 

Figure 3. Time-resolved fluorescence mixing experimental setup. The laser system consists of a 
500-Hz repetition rate, acousto-optically mode-locked and Q-switched Nd : YAG laser. 
The sample is excited by a 0.532-pm Nd : YAG second harmonic single pulse. The resulting 
fluorescence which is time coincident in the summing crystal with a 1.06-pm Nd : YAG 
fundamental pulse is summed to produce a U.V. signal pulse which is proportional to the 
fluorescence at that time. The motorized delay line provides temporal resolution by 
varying the time between the sample excitation and the fluorescence summing. 
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Electronic excitation transport 213 

(Gochanour and Fayer 1981). At this angle, a signal proportional to the total 
fluorescence is obtained; that is, depolarization processes do not contribute to the 
signal. 

The time decay is swept out by varying the delay between the excitation pulse and 
the summing pulse with a motorized delay line. The signal is detected through a U.V. 
bandpass filter by a cooled photomultiplier. The phototube output is measured with a 
lock-in amplifier operating at the laser frequency. The lock-in output and a voltage 
proportional to the delay time are digitized and stored on disc, 

3. Excitation transport and trapping: chromophores distributed randomly in solution 
3.1. Excitation transport 

The transport of electronic excited-state energy among a set of identical molecules 
randomly distributed in a medium such as a solution or a glass has been a challenging 
problem for both the theorist and experimentalist. Excited-state transport can lead to 
such processes as sensitized luminescence and sensitized photochemistry. Forster’s 
(1948) original work employed assumptions that led to the description of excited-state 
transport as inherently diffusive. This provided a qualitative understanding of the 
transport phenomenon. A quantitative theory (Gochanour et al. 1979) shows that 
transport is not generally diffusive. The experimental results provide strong support for 
the theory and give the first complete description of electronic excited-state transport in 
a random system (Gochanour and Fayer 1981). 

An important characteristic of a random system is the statistical distribution of 
intermolecular distances, which leads to a distribution of transfer rates from an initially 
excited molecule to surrounding unexcited molecules. There is not a single path by 
which excitation probability is transferred between two molecules but rather an infinite 
set of possible paths involving all the molecules in the sample. An ensemble average 
over this set of paths is necessary to describe the actual transfer process. 

Until recently theoretical work on this problem has been limited to the study of very 
low concentration systems (Craver and Knox 1971, Haan and Zwanzig 1978), the case 
in which energy transport is close to negligible. In this situation an excited molecule is 
taken to interact with a small number of neighbouring molecules and is independent of 
all other molecules in the sample. This approximation is valid when the initial site is the 
only significant source of excitation probability, that is, the low-concentration, short- 
time limit. Examples of such calculations include the steady-state fluorescence 
depolarization calculations of Craver and Knox (1971), the time-dependent flu- 
orescence depolarization calculation of Hemenger and Pearlstein (1 973), and the Green 
function calculation of Haan and Zwanzig (1978). 

As mentioned above, a comprehensive theoretical study of excited-state transport 
in random systems based on a diagrammatic expansion of the Green function has been 
presented recently (Gochanour et al. 1979). In this section, this theoretical treatment 
will be briefly recounted and the connection to time-resolved fluorescence depolariz- 
ation experiments (Gochanour and Fayer 1981) will be made. Since the experiments 
involve molecules with large transition dipoles, the Forster dipoleedipole mechanism 
will be responsible for excitation transfer. Therefore the theory will be described 
explicitly for the dipole mechanism, although it can be used with any type of transfer 
mechanism, e.g., octupole-octupole interactions responsible for excitation transfer in 
naphthalene mixed crystals (Section 5). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



214 M .  D. Ediger and M .  D. Fayer 

Each configuration of N molecules distributed randomly in a volume V with 
number density p is characterized by the location and orientation of the N molecules 
(rl, ZZ,; r2, 0,;. . . ; rN, Z Z N ) .  The vector ri gives the location of molecule i while ZZi 
represents the set of angular coordinates necessary to specify the orientation of the ' 
transition dipole. The master equation for each configuration, denoted by R, is 

k 

where p j (R , t )  is the probability that an excitation is found on molecule j in 
configuration R at time t, z is the measured lifetime, and wjk is the transfer rate between 
molecule j and k. For the Forster mechanism the wjk are given by 

R ,  characterizes the strength of the intermolecular interaction and can be determined 
from steady-state spectroscopy (Forster 1948). Qualitatively, R ,  is a measure of the 
distance over which energy transport is efficient. The orientation factor K;k is 
dependent on the relative orientation of the transition dipoles of moleculesj and k and 
can be written as 

where aj and a k  are unit vectors in the directions of the transition dipoles of molecules j 
and k and ?jk is a unit vector in the direction of a vector connecting molecule j and k. 

The quantity most useful for obtaining information concerning transport is the 
Green function: 

The Green function can be thought of as the probability of finding an excitation at 
position r and time t with the initial condition of unit probability at r'. It is convenient 
to divide the Green function into two terms, one which is a measure of probability at the 
initial site of excitation r', Gs(t), and one which is a measure of the probability found on a 
molecule a distance r - r' from the initial site, Gm(r - r', t). 

The two components of the Green function can be expanded in diagrammatic 
series. To do this it is convenient to work with the Fourier-Laplace transforms of Gs(t) 
and Gm(r-r', t), &(E) and e"(k, E). The diagrammatic series corresponding to each of 
these functions is obtained by expanding the functions in powers of E and wjP An 
infinite series of products of w . factors results. Each of these products is then associated 
with a diagram. The complexity of the diagrammatic series can be decreased through a 
topological reduction. This procedure involves examination of the topological 
structure of the e(k ,  E )  diagrammatic series to find a smaller set of em(k,  E )  diagrams 
from which all diagrams can be generated. The resulting series of diagrams, the 
z(k,GS(E)) series, is both a function of &(E)  and can be used to generate &(E). 

Conservation of probability implies a self-consistent condition which is used to 
generate an approximate solution for the Green function. 

The results of the diagrammatic method reproduce analytically the low- 
concentration, short-time theoretical results of Haan and Zwanzig (1978). In addition, 
the calculations yield information on the system's intermediate and long-time 
behaviour. The results show that, for all concentrations, excited-state transport 
becomes diffusive at sufficiently long times. The long-time diffusion constant is given by 

G(r - r', t )  = Gs((t) + Gm(r - r', t )  (4) 

ik 
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Electronic excitation transport 215 

This value is in good agreement with the result from Forster's (1948) simple model of 
equally spaced chromophores. However, the recent results show that for low- 
concentration systems, transport becomes diffusive only at very long times, i.e., after 
more than a few lifetimes, and thus for all practical purposes transport is not diffusive. 
For high concentrations transport becomes diffusive within one lifetime. 

If a solution of molecules in a-viscous solvent is irradiated with a short pulse of 
polarized light, molecules with their transition dipoles oriented parallel to the 
excitation polarization are preferentially excited. If the ensuing fluorescence is detected 
through a polarizer, the initial ratio of parallel polarized fluorescence intensity to 
perpendicular polarized intensity is 3 : 1. In a low-concentration sample where energy 
transfer does not occur, both components of the fluorescence decay with the lifetime 
and the polarization ratio is preserved. In higher-concentration samples excited-state 
population is transferred to randomly oriented molecules and the fluorescence is 
depolarized. Galanin has shown that the overwhelming contribution to fluorescence 
polarization is due to fluorescence from chromophores which were initially excited 
(Craver and Knox 1971, Galanin 1950, Jablonski 1970), that is, energy transfer can be 
assumed to occur to a randomly oriented molecule. Thus the time dependence of 
fluorescence depolarization will be related to the time-dependent probability that the 
excitation is at the initial site. For the theoretical model described here, this probability 
is given by the inverse Laplace transform of &(E), which will be denoted by Gs(t). &(&) is 
given by 

e"(&)=Z{(n2y2C2/4)[1- [1+ (32/n2y2c2)(&z-olsS7y2c2)]~'2] 

+4 (~~-0*1887y~C~)} / [4 (~~-0*1887y~C~)~]  (6) 

where the dimensionless concentration C is given by 

C = $nR$p (7) 

y = 0.846 (8) 
and p is the number density. Gs((t) is obtained from equation (6) by numerical inversion 
of the Laplace transform (Stehfest 1970). 

Thus the fluorescence arises from two ensembles. The first, with a weighting factor 
Gs(t), consists of molecules initially excited and the resulting fluorescence is polarized. 
The second ensemble, with a weighting factor { 1 - Gs(t)}, consists of molecules to which 
excited-state energy has been transferred the fluorescence from these sites is 
unpolarized. Calculation of the component of the fluorescence with a given polariz- 
ation for each of these ensembles is straightforward. The following results are obtained 

III(t)=exp(-t/z){ 1 +04Gs(t)} 

l,(t)=exp(-t/z){l -04Gs((t)} 

where Ill and I ,  are the fluorescence intensities polarized parallel and perpendicular to 
the excitation polarization. Equations (9 a) and (9 b) show the direct path from the 
experimental observables to the system's Green function and thus to a detailed 
description of the excited-state transport. 

Solutions of rhodamine 6G (R6G) in glycerol were studied using the fluorescence 
mixing method described in Section 2 to measure the time-resolved fluorescence 
depolarization (Gochanour and Fayer 1981). The fluorescence mixing technique 
permits examination of and I , .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1
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Sample excitation was by 532-nm, 50-ps pulses. The samples consisted of known 
concentrations of R6G dissolved in glycerol. The solution is placed in a rotating sample 
cell of approximately 5.0 cm diameter formed by two glass flats separated by thin foil 
spacers. The sample cell is rotated to avoid effects due to photodecomposition or 
heating. The cell thickness was adjusted from 300 to 5 pm to control the optical density 
of the various concentration samples in order to eliminate reabsorption problems. 

First a low-concentration sample (2.95 x lo-’ M) was examined. This sample 
corresponds to the C = 0-0 limit, that is, excited-state transport is negligible. The decays 
of the parallel and perpendicular components of the fluorescence are identical; they 
decay exponentially with a lifetime of 3.1 f0.1 ns. In addition to providing the lifetime 
which is a necessary input for the theory, the low-concentration data demonstrate that 
molecular rotation is much slower than the lifetime and thus depolarization effects due 
to molecular rotation (Chuang and Eisenthall971, Porter et al. 1977, Moog et al. 1982) 
do not occur on the time scale of the experiment. 

The effect of increasing concentration can be seen in the data in figure 4. For a 
concentration of 2.6 x M the decay of the parallel component of the fluorescence 
is found to be faster than the 3.1-11s exponential decay obtained at low concentration 
while the decay of the perpendicular component is slower than the lifetime decay. The 

10 - 

8 -  

6 -  

4 -  

2 -  

0 1 2 3 4 5 6 7 8  

TIME (NSEC) 

Figure 4. Depolarization data and theoretical curves for a sample of rhodamine 6G (R6G) in 
glycerol of concentration 2.6 x 10- M. The decay of the parallel component is faster than 
the lifetime decay and the decay of the perpendicular component slower than the lifetime 
decay due to excited-state transport-induced depolarization. The Forster radius, 
R ,  = 50 b;, was determined spectroscopically. The solid curves through the data were 
calculated theoretically using equations 9 (a) and (b) without recourse to adjustable 
parameters. 
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10 - 

8 -  

value of the Forster radius, R,, was determined from the overiap of the absorption and 
fluorescence spectra (Forster 1948). For R6G in glycerol, R ,  = 50 A. Since the sample 
lifetime, z, the sample concentration, and R, are all known, all the parameters necessary 
for the theoretical calculation of the time-dependent depolarization due to excitation 
transport are available. The solid curves through the data were calculated using 
equations (9 a) and (9 b) without recourse to adjustable parameters. 

In figure 5,  the decay of the parallel component of the fluorescence is shown for 
solutions having reduced concentrations of C =0.5 and C = 1.7. The solid lines through 
the data points are the theoretical curves calculated for these concentrations. The 
agreement between the experimental data and the theoretical curves (no adjustable ' 

parameters) is nearly perfect for both concentrations. Similar agreement has been 
obtained for the decay of the perpendicular component of the fluorescence decay. The 
same quality of agreement was also obtained for a range of sample concentrations. 
These results confirm the accuracy of the diagrammatic self-consistent theoretical 
method and yield a comprehensive description of excited-state transport in solution. 

Using the experimental results with the diagrammatic theory it is possible to 
calculate any of the energy transport properties of the system studied. One of the most 
important results of the theory is that excitation transport among chromophores 
randomly distributed in solution is nondiffusive at short time and becomes diffusive in 

I. II POL. C = 0 . 5  
CONC = 1.6 x molcs/l 

2. II POL. C = I .7 

CONC = 5.3 XIO-3 moles/\ 

2 

0 I 
d . . . , . . . .  . .  . .  . I  . .  I I  

0 1 2 3 4 5 6 7 8  

TIME (NSEC) 

Figure 5. Depolarization data and theoretical curves for the parallel component of the 
fluorescence of rhodamine 6G (R6G) in glycerol for concentrations corresponding to 
C=O3 and C=  1.7. The theoretical curves for these concentrations were calculated with 
no adjustable parameters. The agreement between theory and experiment is near perfect. 
The same quality of agreement was obtained for a variety of sample concentrations. These 
results confirm the diagrammatic self-consistent theoretical method and yield a compre- 
hensive description of excited-state transport. 
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the long-time limit. If transport is diffusive, the mean-square displacement of the 
excitation increases linearly in time. The time derivative of the mean-square 
displacement is then a constant, 6 0 ,  where D is the diffusion constant (see equation (5)). 
In figure 6 the time derivatives of the mean-squared displacements are displayed for 
reduced concentrations (equation (7)) C = 0.5, C = 1.7 and C = 5.0. (To illustrate the 
transport properties of the system, the curves are calculated without the exponential 
decay due to the lifetime.) For C=O.5, a relatively low concentration, transport is 
nondiffusive for the 2 5  lifetimes displayed in the graph. For C = 1.7, a moderate 
concentration, transport is approaching the diffusive limit by 2.5 lifetimes. For C = 5-0, 
a moderately high concentration, transport, although highly nondiffusive at short time, 
becomes diffusive by - 3/4 lifetimes. 

A C.0.5 C.0.5 

T-3.1 nsec 

' 
~ .______ _- - _ _  - - - - -  -- -- 

0.5 1.0 1.5 2.0 t/r 

6D.4.56 '1 0.5 1.0 1.5 2.0 t/T 

I 

6D.19.2 I 
I 

0.5 1.0 1.5 2:O t/r 

Figure 6. Calculated time derivatives of the mean-square displacement of an excitation 
undergoing transfer between molecules randomly distributed in solution. The parameters 
R ,  and t are appropriate for the system studied, R6G in glycerol. The dashed lines indicate 
the theoretical value of the long-time-limit diffusion rate. For C-0.5 (figure 6(4) 
transport is not diffusive during the first several lifetimes. For C= 1.7 (figure 6(b)) 
transport is approaching the diffusive limit by two lifetimes. For C=5.0 (figure 6(c)) 
transport becomes diffusive within one excited-state lifetime. 
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Calculation of mean-square displacements yields interesting information concern- 
ing the transport of the excitation. For C = 1.7 and t =z, the root mean-square 
displacement is 117 A. This corresponds to a volume in which the average number of 
molecules is about 21. Fort = 22 the excitation is distributed over a volume in which the 
average number of molecules is 50. Even for this relatively low concentration, it is clear 
that theoretical treatments which allow transfer among only two or three near 
neighbours are inadequate to describe the transport properties of a random system 
over full ranges of time and concentration. 

3.2. Transport and trapping. 
The experiments and theory described above apply to systems with a single type of 

chromophore. Hence, there is only donor-donor excitation transport. Another 
important class of energy transport problems involves systems with two types of 
chromophores, donors and traps. Excitation transport occurs among the donors and 
transfer from donors to traps can also occur. However, transfer to the traps is 
irreversible, usually because the trap is lower in energy and energy dissipation upon 
trapping makes back transfer to a donor energetically impossible. For example, this is 
the situation in a photosynthetic unit in which energy transport among chlorophyll 
molecules leads to irreversible trapping of the energy on the reaction centre (Beddard 
and Porter 1976, Sauer 1978). 

Forster treated the trapping problem in an important limiting case, which we refer 
to as the Forster limit (Forster 1949). The Forster limit involves a two-component 
ensemble of donor and trap molecules in the regime of high trap concentration and 
near-zero donor concentration. Since each donor is surrounded by many traps, the 
excitation probability flows directIy from a donor to the traps with no donor-donor 
transport. This greatly simplified the problem and allowed an exact theoretical 
solution. The basic applicability of this result to an experimental system investigated on 
a picosecond time scale was first demonstrated by Rehm and Eisenthal (1971). 
Although the Forster theory is useful within its restrictions, it is not extendable to other 
concentration regimes. Many types of systems of experimental interest occur outside 
the low-donor-concentration limit. Transport among chromophores in polymer coils 
and eventual trapping by excimers (Klopffer 1981, Frank and Harrah 1974) (e.g. 
polyvinylnaphthalene), transport and trapping in photosynthetic units (Pearlstein 
1964, Markvart 1978, Porter 1978), ruby crystals (Selzer et al. 1977, Imbusch 1967), or 
concentrated dye solutions (Lutz et al. 198 l), and similar problems involving electron 
transport (Scher et al. 1980), are but a few examples of important current problems 
requiring a broader understanding of transport phenomena in disordered systems. 

Loring, Andersen and Fayer (LAF) (1982 a, b) extended the diagrammatic 
approach of Gochanour, Andersen and Fayer (GAF) (1979) described in the previous 
section. LAF treated two-component systems composed of donors and traps. Again an 
accurate approximation for the Green function solution to the system's master 
equation is obtained. The LAF results permit calculation of experimental observables 
at all times and for any combination of donor and trap concentration. It accurately 
reproduces the Forster limit results for very low donor concentration and high trap 
concentration. It recovers the results of GAF in the opposite limit, that is, high donor 
concentration and zero trap concentration. For intermediate cases the LAF treatment 
provides an accurate description of transport and trapping in disordered systems. 

' 

In the experiments described below, the time-dependent excited-donor population 
is monitored. Thus we need an expression for GD(t), the part of the Green function that 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



220 M .  D .  Ediger and M .  D.  Fayer 

gives the time-dependent probability of finding an excitation in the donor ensemble, 
given that an excitation is created in the donor ensemble at t = 0. The decay of GD(t) will 
be determined by the transport dynamics which depend on the donor and trap 
concentrations and the strengths of the donor-donor and donor-trap interactions 
(RFD and RFT). The theoretical development of LAF gives an expression for CD(&), the 
Laplace transform of GD(t). This expression is a function of C ,  and C ,  where 

and 

C ,  and C, are the reduced concentrations and pD and p, are the number densities for 
donors and traps, respectively. RED (donor-donor) and RFT (donor-trap) are lengths 
which characterize the excited-state intermolecular transfer interactions (Forster 1948). 
(In the last section only donor-donor transport was considered. Therefore it was 
unnecessary to use subscripts and superscripts to distinguish donor and trap 
parameters.) As in the experiments described above, RFD and RET can be determined 
spectroscopically. 

The LAF formalism provides an analytical expression .for eD(&), the Laplace 
transform of the probability of finding the excitation in the donor ensemble, i.e., of 
finding an excitation which has not trapped. This expression does not include loss of 
donor probability due to decay of the donor to its ground state. To obtain an 
expression for use in comparison with experiments (Loring et aL.1982 a, b), first &"(E) is 
numerically inverted to give GD(t). GD(t) is then multiplied by a decaying exponential to 
account for the donor excited-state lifetime, i.e., 

N D ( t )  = GD(t) exp (- t/z,) (1 1)  

where ND(t) is the number of excited donor molecules as a function of time. ND(t) is 
directly proportional to the time-resolved fluorescence decay, the experimental 
observable in the fluorescence mixing experiments. It is also the observable in transient 
grating and probe-pulse experiments. All three techniques were employed to examine 
the transport and trapping problem experimentally (Miller et al. 1983). Only data from 
fluorescence mixing experiments will be discussed here. 

In the experiments described below, the donor is R6G and the trap is malachite 
green (MG). MG in room temperature solutions has a negligible quantum yield and a 
picosecond time scale lifetime. Therefore, an excitation which leaves the donor 
ensemble by trapping does not contribute to the fluorescence. The sample is excited 
with 532-nm light. The excitation pulse was polarized at 547 L- 0 5 "  (the magic angle) 
with respect to the I.R. single pulse and the sum crystal axis to eliminate fluorescence 
depolarization effects arising from molecular rotation (Chuang and Eisenthal 1971, 
Porter et al. 1977, Moog et al. 1982) or excited state transport (Gochanour and Fayer 
1981). Again samples were studied in a rotating cell to avoid heat and photodecompo- 
sition problems. Studies of sample thickness were made to ensure that reabsorption did 
not influence the experimental results. It was found that an optical density of 0.06 or 
less, at 0-532 pm, the absorption peak, would eliminate reabsorption problems in the 
system studied. The intensity of laser excitation was attenuated by a series of neutral 
density filters until stimulated emission and other power-dependent effects were 
eliminated. 
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In figure 7, experimental data from various R6G-MG systems are displayed. The 
donor lifetime, zD, was measured in a low concentration sample. Given zD, the only 
remaining parameters in the LAF theory are RFT abd RFD. These were determined 
independently from the overlap of the fluorescence spectra of R6G with the absorption 
spectra of R6G and MG. As a first test of procedures and to confirm the spectroscopic 
measurements, the Forster limit was studied and RFT was obtained. The results of the 
fluorescence mixing studies are shown in figure 7 (a). The MG concentrations were 

I I 

0 I 2 3 4 t ime (nsl 

Figure 7. Time-resolved fluorescence mixing data for rhodamine 6G (R6G) and malachite 
green (MG) in ethanol. (a) The Forster limit. The R6G concentration is low (1 x M) 
and the MG concentrations (indicated) are high. Only donor to trap energy transport 
occurs. The solid curves through the data were calculated using R F  as an adjustable 
parameter. For all curves, RET is 58 f 1 A. The sensitivity of the calculation to RET is 
illustrated by the two solid lines for the 3 x low3 M data. The upper solid line was 
calculated with R F  = 57 A while the curve through the data has RET = 58 A. The time- 
resolved measurement of RET agrees well with the spectral overlap measurement of 
59 f 1 A. (b) Higher donor concentration systems. At this R6G concentration (3 x 10- ') 
the effects of donor-donor energy transport become appreciable. The solid curves through 
the data were calculated with the LAF theory without adjustable parameters using the 
independently determined values of RET, RED, and zD. Excellent agreement between theory 
and experiment is obtained for other concentrations of R6G and MG as well. 
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varied from 5 x M. Higher 
concentrations of MG than 3 x l ow3  M absorbed almost all the fluorescence, making 
the signal-to-noise ratio too low to be useful. The solid lines through the data were 
obtained from equation (1 1). The reduced donor concentration was C,=O.O2 (no 
donor-donor transport). R Y  was used as an adjustable parameter to obtain the 
calculated curves in figure 7 (a). All the concentrations were fit with a single value of 
RFT = 58 f 1 A. The accuracy of this measurement is demonstrated in figure 7 (a) 
for the MG concentration of 3 x M. The top solid curve is calculated with an RFT 
of 57A while the curve running through the data has an RFT of 58 A. The calculated 
curve with R:T = 59 A (not shown) is symmetrically displaced from the 58 A curve. The 
measurement of RFT( = 58 A) is in excellent agreement with the spectral measurement 
which found RfT = 59 f 1 A. The close agreement between the spectroscopically 
determined value of R$ and the time-resolved measurements over a wide range of 
concentrations supports the accuracies of the determinations. To check for systematic 
errors in our time-resolved measurements, we repeated the Forster limit concentration 
studies using transient grating and probe pulse techniques at two different excitation 
wavelengths, 0532 and 0.355 pm. The results were very close to those obtained from the 
fluorescence mixing experiments, with the probe pulse and transient grating measuring 
RFT= 57 f 1 A and RFT = 58 f 2 A, respectively. 

Figure 7(b)  displays fluorescence mixing data for a series of experiments on the 
general transport and trapping problem in which the donor concentration and donor- 
donor transport are significant. The curves are for fixed R6G donor concentration. The 
solid lines through the data are calculated using equation (11) with no adjustable 
parameters. The agreement between experiment and theory is very good. Equally good 
agreement was obtained for systems in which the R6G concentrations was 2 x lop3 M 
and 1 x M. The effect of donor-donor transport is significant as can be s.een by 
comparing the results in figure 7 (b) to the Forster limit results having the same MG 
concentrations. For example, Zeff (the time required for the signal to fall to lie) for 
1 x MG samples in the Forster limit is -211s (figure 7(a)). The same MG 
concentration, but with a RG6 concentration of 3 x lop3 M, has a z~~~ of - 1-411s 
(figure 7 (b)). At higher concentrations of R6G, transient grating experiments were used 
to avoid reabsorption problems. Experiments were also. performed in glycerol to 
examine the theory’s capacity for handling fixed molecular orientations as well as 
rapidly rotating molecules. These two situations require different angular ensemble 
averages of the Green function (Gochanour and Fayer 1981). In all cases the 
diagrammatic theory is able to reproduce the experimental results without recourse to 
adjustable parameters. 

Theoretical problems associated with excited-state transport phenomena have 
both quantum mechanical and statistical mechanical aspects. Forster (1948,1949) and 
subsequent workers (Dexter 1953, Vavilov and Galanin 1949) have accurately related 
spectroscopic observables to the intermolecular interactions and transfer rate between 
a pair of molecules. However, it is the interplay of intermolecular interactions among a 
large number of molecules that determines the nature of excited-state transport in 
solution. In any microscopic volume, there is a fixed spatial arrangement of atoms or 
molecules which controls the local time evolution of energy transport. A macroscopic 
solution contains an infinite collection of all possible local environments. Thus, the 
time-resolved observables of energy transport in solution involve an infinite number of 
dynamic systems. Owing to the recent theoretical and experimental advances, we now 
have a detailed understanding of excitation transport in such disordered media. 

M to 3 x M with R6G concentrations of 1 x 
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4. Fluorescence quenching in concentrated dye solutions 
A common situation in which excitation transport and trapping occurs in solution 

is in the process of fluorescence quenching in concentrated dye solutions. This is a well 
known phenomenon in which the apparent fluorescence quantum yields of dye 
solutions drop dramatically at very high dye concentration. Recent work reveals the 
underlying dynamic mechanism responsible for fluorescence quenching. 

The experimental evidence suggests that three radiationless processes govern the 
disposition of electronic excited-state energy in concentrated dye solutions. These three 
processes are energy transfer between dye molecules (Gochanour et al. 1979, 
Hetherington et al. 1979), trapping by dimers (Loring et al. 1982a,b, Imbush 1967), 
which have states of lower energy, and radiationless relaxation (Birks 1970) of the dimer 
excited state. A simple model provides a microscopic dynamical picture of fluorescence 
quenching (Schafer 1977) in concentrated dye solutions. Qualitatively, the 
concentration-dependent processes that combine and result in fluorescence quenching 
work in the following manner. At very low concentration, a dye solution absorbs light 
and fluoresces. At moderate concentrations, electronic excited-state energy transport 
occurs due to dipole-dipole interactions between the dye molecules (Berlmann 
1973).The energy transport causes fluorescence depolarization effects, as discussed 
above (Gochanour and Fayer 1981), but does not affect -the fluorescence quantum 
yield. As the concentration is increased further, ground state dimer formation begins 
(Selwyn and Steinfeld 1972, Bojarski et al. 1975) and the rate of energy transport 
continues to increase. By dimers we mean aggregates of two dye molecules that have 
distinct spectral and other characteristics. Rapid transport among the monomers 
allows an excitation to find a dimer and become trapped on it. The experiments indicate 
that back transfer from the excited dimer to monomers is negligible. Once the 
excitation is trapped on a dimer, rapid radiationless relaxation to the ground state 
occurs and the fluorescence is quenched. 

The concentration dependence of the fluorescence quenching is determined by the 
concentration dependence of the trapping. The trapping rate depends on both the 
dimer concentration and the concentration-dependent rate of energy transport. The 
model predicts that the trapping rate varies approximately as the cube of the dye 
concentration. Therefore the onset of fluorescence quenching with increasing con- 
centration is very rapid. 

Experimentally, the onset of trapping by dimers manifests itself as an apparent 
reduction in the excited-state lifetime. In the limit, that energy transport becomes 
extremely rapid, the trapping occurs on a time scale that is short relative to the dimer 
lifetime, and the excited-state population decays with the dimer lifetime. In the two 
systems studied, rhodamine 6G (R6G) in glycerol and R6G in ethanol, the dimer 
lifetimes are 830 ps and < 50 ps, respectively. Presumably, the dimers have faster 
radiationless relaxation rates than the monomers because of the loose nature of the 
dimer complexes. The dimers undergo rapid configurational changes that enhance the 
radiationless relaxation rates. This is consistent with the longer dimer lifetime in the 
glycerol solvent. Since glycerol is much more viscous than ethanol, &,will ‘hold’ the 
dimer complex more rigidly and therefore will slow radiationless relaxation. 

A formally correct, accurate treatment of this problem involves the solution of the 
master equation for excited-state transport and trapping in an ensemble of randomly 
distributed dye molecules and dimer traps in solution (Loring et al. 1982 a, b). This 
approach was discussed in the last section. As the mathematical complexity of the 
accurate treatment would obscure the basic nature of the problem, we will employ an 
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heuristic, qualitatively correct, analysis (Lutz et al. 1981) in terms of a simple set of rate 
equations. These rate equations employ a trapping rate constant. The full diagramma- 
tic Green function treatment confirms the basic concentration dependence presented 
here; however, trapping is not governed by a rate constant but involves a time- 
dependent trapping rate function. Thus the detailed time development of these 
equations is not correct. 

In the simple model, the rate equations governing the excited state populations are: 

dM*ldt= -KMM*-KTM* (12 a) 

dD*/dt = - K$* + K T M* (12 b) 
M* is the concentration of excited monomers and D* is the concentration of excited 
dimers. KM is the rate constant for decay of excited monomers to the ground state by 
radiative and nonradiative processes and KD is the analogous rate constant for decay of 
dimers to the dimer ground state. KT is the trapping rate constant. 

The experiments were performed with the transient grating method to minimize 
reabsorption problems in the high-concentration samples. The transient grating signal 
depends on the square of the excited state concentration (Fayer 1982) {Nl(t)}Z, i.e. 

S(t) = A {Nl(t)l (13) 
where A contains all the time-independent parameters such as beam geometries and 
N , ( t )  = M* + D*, the sum of the excited monomer and dimer concentrations. Solution 
of the rate equations yields 

Nl(t)= M,*(exp [-(KM + KT)tl + [KT/(KM + KT- KD)l 

fexp(-KDt)-exp [-(KM+KT)tl)) (14) 
N,(t) is the time-dependent function determined experimentally from S(t). It is 
informative to note some special cases of equation (14). If KT is very small, trapping is 
negligible and Nl(t) decays exponentially with the monomer rate constant, KM. If 
KD>> K M ,  K,, then N,(t) decays exponentially with a rate constant (KM + KT). And if 
K ,  >> K,, KD, excitations are immediately trapped by dimers and N , ( t )  decays 
exponentially with the dimer rate constant, K,. 

In general, trapping is characterized by a time-dependent trapping rate function 
(Loring et al. 1982 a, b, Wieting et al. 1978), not by a rate constant. Trapping occurs 
when an excitation has visited enough distinct sites so that on the average it has 
sampled one trap species. For a random walk on an isotropic three-dimensional lattice, 
the number of distinct sites visited increases linearly with time (Montroll 1964). 
Therefore, trapping can be characterized by a trapping rate constant which depends on 
the site-to-site hopping time. To improve this approximation, the randomness in 
spatial distribution of the dye molecules in solution is taken into consideration in the 
calculation of the hopping time. In using a trapping rate constant we are here treating a 
solution with its inherent disorder as a lattice. At high concentrations where trapping 
by dimers is important, transport becomes diffusive very quickly (see figure 6) and is 
isotropic in the three dimensions. The above considerations lead to the following 
expression for the trapping rate constant, (Lutz et al. 1981), KT: 

KT= ($) M 3  

KT depends on the cube of the dye concentration, M .  The other parameters are 
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constants: q is the monomer-dimer equilibrium constant; h,  is the site-to-site hopping 
time and M ,  is the dye concentration, both for a solution with the Forster 
dimensionless concentration, C = 1 (see equation 7); P is the probability that on any 
step a distinct site is visited and corrects for the return to previously visited sites. For an 
isotropic three-dimensional random walk on a lattice, P = 066. The cubic dependence 
on concentration of the trapping rate constant leads to a very rapid increase in trapping 
with concentration. 

Examination of N,( t ) ,  equation (14), which gives the time-dependent signal, shows 
that in general the decays are nonexponential. In the data analysis the following 
procedure is employed. The experimental decays are plotted and a decay constant is 
determined for each concentration. These are then compared with a theoretical 
effective decay constant, Keff, obtained from equation (14) by finding the time required 
for N , ( t )  to fall to l / e .  Thus 

Keff = l/tt (16) 

Nl(t+) =( l /e ) {N, (O))  (17) 

with tt  obtained from equation (14) by 

Transient grating experiments were performed on a series of solutions of rhodamine 
6G in glycerol ranging in concentration from 8.7 x lop4 M to 0.05 M. A typical result 
and log plot are shown in figure 8. In all cases the data appeared to decay exponentially 
for several lifetimes. Thus, the decay could be characterized by an effective rate 
constant, Kefn as discussed above. A plot of Keff versus R6G concentration is shown in 
figure 9. First consider the qualitative features of the concentration dependence. At low 
concentration, Keff is independent of concentration and is given by the monomer decay 
rate: Keff = K ,  = 3.3 x lo8 s-'. This represents the limit K ,  = 0, no trapping, since there 

kKEFF = 9 .3~10~  f' 

0 I 2 

TIME (NSEC) 

Figure 8. Transient grating results for concentrated rhodamine 6G in glycerol (1.74 x lo-' M). 
Probe wavelength, 560nm. Inset shows the log of the data versus time. The effective decay 
constant for this data set is Keff = 9.3 x 10's- 
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0.21 

0 10 20 30 40 50 
R6G CONCENTRATION ( la3 MI 

Figure 9. Effective decay constants, Keff versus concentration of rhodamine 6G in glycerol. + 
indicates experimental data. As the R6G concentration increases, excited-state transport 
and trapping by R6G dimers becomes increasingly rapid. Fast radiationless relaxation by 
the dimers decreases the excited-state lifetime and quenches fluorescence. The solid curve 
is calculated. 

are few dimers and transport is relatively slow. At high concentration, Keff is essentially 
concentration independent and given by the dimer decay rate: Kerf z KD = 1.2 x lo9 s- 
and the dimer lifetime is 830ps. This corresponds to the limiting case KT>>KD, K ,  
(instantaneous trapping), which occurs at high concentration since the dimer 
population is substantial and energy transfer is fast. 

In addition to affecting excited-state dynamical processes, dimer formation should 
give rise to changes in the ground-state absorption spectra of the solutions (Selwyn and 
Steinfeld 1972, Bojarski et al. 1975). Spectra of solutions of many concentrations were 
examined and it was found that the onset of spectral changes coincides with the onset of 
changes in the excited-state decay rate. This clearly demonstrates that the con- 
centration dependence of the decay rate is due to changes in the ground-state molecules 
and not to processes such as excimer formation that only affect the excited states. 

Detailed comparison of the model and the experimental data is given in figure 9. 
The monomer and dimer decay rates were determined from the transient grating (TG) 
data at low and high concentration, respectively. Since the exact equilibrium constant, 
q, is not known, TG data at a single intermediate concentration was used to determine 
KT. Decay constants, Keff, were then calculated at other concentrations by scaling KT 
as the concentration cubed and using equation (14). The calculated values of K,, as a 
function of concentration yielded the curve (solid line) shown in figure 9. The curve fits 
the experimentally measured decay constants over the range of concentration, 
indicating that the microscopic model is basically correct. 
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Knowing K ,  allows calculation of the equilibrium constant for dimer formation 
from equation (14) since the other parameters are known. An equilibrium constant 
q = 9.7 M-  ' was obtained. Equilibrium constants for various solutions of R6G in 
glycerol-water mixtures have been determined from concentration-dependent absorp- 
tion spectra to range from 28 M-' in the solution with the most water to 11 M-  ' in the 
solution with the least water (Bojarski et al. 1975). The equilibrium constant that 
resulted from the time-dependent measurements is consistent with these values. This 
provides additional support for the basic model. 

Similar experiments were performed for the system R6G in ethanol (Lutz et al. 
1981). At low concentration the rate constant is determined by the monomer decay 
rate: Keff = K ,  = 2.7 x lo8 s- '. As the concentration rises, the decay rate rapidly 
increases. The measurement at the highest concentration is instrumentally limited by 
the laser pulse duration. The excited-state decay constant at high concentration is at 
least 2 x ~O'OS-~, i.e. the lifetime is less than 50ps. This is in marked contrast to the 
glycerol solutions in which the dimer lifetime is 830ps. 

Clearly the radiationless relaxation rates of the loosely bound dimer are influenced 
by the solvent viscosity. The low viscosity of ethanol permits rapid configurational 
fluctuations that lead to very fast radiationless relaxation. The fluctuations occur more 
slowly in glycerol, and thus the dimer lifetime is longer. 

These results directly apply to concentration-dependent fluorescence queaching in 
dye solutions. Trapping on dimers, which increases as the cube of the dye concentration, 
leads to fast radiationless relaxation and this quenches fluorescence. The solvent- 
dependent dimer lifetime also influences fluorescence quenching. In high- 
concentration R6G in ethanol solutions, fluorescence is completely quenched since the 
dimer radiationless relaxation rate is extremely fast. In high-concentration glycerol 
solutions, fluorescence is only partially quenched since the dimer decay rate is only four 
times faster than the monomer decay rate. This allows some radiative relaxation to 
occur. 

5. Energy transport on a lattice 
5.1. Theory 

All the physical systems involving energy transport which we have discussed in this 
paper have a common feature. In each case, r, the variable that specifies a 
chromophore's position, has been a continuous variable. We now wish to consider a 
class of problems where r is a discrete variable, and hence the interacting molecules are 
confined to the sites of a lattice. A theory which considers the discrete structure of a 
lattice is necessary for a detailed understanding of energy transport in a variety of 
systems such as mixed molecular crystals. (Gentry and Kopelman 1983, Kopelman 
1981, Smith et al. 1977) 

Loring et al. recently presented a diagrammatic treatment of energy transport on 
substitutionally disordered lattices (Loring et aZ. 1983 a, b, 1984 a). This approach is 
analogous to the GAF treatment (Gochanour et al. 1979) of the continuum energy 
transport problem. The lattice problem is complicated by the fact that a lattice site can 
be occupied by at most one chromophore. Therefore the chromophore positions are 
correlated and ensemble averages must be taken only over allowed configurations. This 
makes the lattice problem much more difficult from a theoretical perspective (Sakun 
1973, Korzeniewski et a/. 1983). 

In order to illustrate some distinctive features of energy transport on a lattice, we 
examine results for the case in which the transfer rate is non-zero only between 
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chromophores that are nearest neighbours on the lattice. This problem has a 
percolation threshold. Below some critical concentration, the chromophores exist only 
in clusters of finite size. The mean-square displacement cannot grow linearly at long 
times and B(O,O), the long-time limit of the diffusion constant, should be zero. Curve N 
in figure 10 illustrates the behaviour of B(0,O) for a nearest-neighbour rate of 
magnitude w on a simple cubic lattice of spacing a. &O, 0) has the exactly correct value 
at c =  1, approaches zero as c approaches 0.346 from above, and is zero below this 
concentration (c is the fraction of sites occupied by donor chromophores). The critical 
concentration for site percolation on a simple cubic lattice has been calculated by 
Monte Carlo methods to be approximately 0.312 (Kirkpatrick 1976). Thus the 
calculated D(0,O) has a physically reasonable concentration dependence. 

For any transfer rate of infinite range, however rapidly decaying with distance, such 
as that resulting from multipolar or exchange interactions, percolation effects will be 
absent. Curve F in figure 10 illustrates the concentration dependence of B(0,O) for an 
orientationally averaged Forster dipole-dipole transfer rate on a simple cubic lattice. 
The result for c = 1 is the exact result for an ordered lattice given by Forster (1948). The 
dashed curve shows B(0, 0) of GAF for a continuum. Figure 10 shows that for small c, 
the lattice D(0,O) approaches the continuum result of GAF (Gochanour et al. 1979). We 
expect that in the limit of low concentration, the discrete nature of the lattice will cease 
to be important and that transport on a disordered lattice will resemble transport in a 

3.0 

2.0 

D 
a 2  W(a)  

I .o 

0 
0 C I .o 

Figure 10. The concentration dependence of the diffusion constant D for a nearest-neighbour 
transfer rate (N) and for a Forster dipole-dipole transfer rate (F) on a simple cubic lattice of 
spacing a. w(a) is the nearest-neighbour step rate. The dashed curve shows D for the 
Forster rate in a continuum calculated using the GAF theory. 
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continuum. Thus the lattice B(0,O) shown in figure 10 has the exactly correct value at c 
= 1, approaches an accurate continuum approximation at low concentration, and 
hence is expected to be accurate for intermediate concentrations. This is the first theory 
of hopping transport on a randomly substituted lattice which is not restricted to low 
concentration that can be applied in the case of a long-range transfer rate. 

Time-dependent observables can also be calculated for the lattice problem. We can 
test the accuracy of the Gs(t) calculation at c=  1 by examining the case of nearest- 
neighbour hopping on a filled simple cubic lattice. G"(t) cannot be &&ulated exactly in 
closed form for a filled lattice of arbitrary type and a transfer rate of arbitrary distance 
dependence. However, for the case of a transfer rate that is non-zero only between 
nearest neighbours on a filled simple cubic lattice, GS(t) can be calculated exactly 
(Barber and Ninham 1970). Figure 11 shows plots of the exact Q(t) (A) and the 
approximate Gs((t) (B) for this case. The approximate Gs((t) is practically indistinguish- 
able from the exact answer for a filled lattice. Since the low-concentration limit of the 
lattice problem approaches the accurate continuum approximation, the calculation of 
Gs(t) should be accurate for any concentration. 

All the calculations illustrated in figures 10 and 11 were performed for a simple 
cubic lattice. The lattice theory is not restricted to this and can be applied to any lattice 
type of any dimensionality with any transfer rate. The results are expected to be good 
approximations over the full range of concentration. 

GS(w t ' * O i  1 

C = l  

0 
0 w t  I .o 

Figure 1 1 .  Gs(wt), the probability that an initially excited chromophore retains its excitation 
after a time wt,  for a filled simple cubic lattice and a nearest-neighbour transfer rate. Curve 
A is the exact result, and curve B is the approximate result calculated with the LAF lattice 
theory. The approximation is seen to be highly accurate for this case. The LAF lattice 
theory gives an accurate description of transport on a lattice for any distance dependence 
of the transfer rate, for any lattice type, and for any concentration from a filled to an empty 
lattice. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



230 M .  D.  Ediger and M .  D.  Fayer 

5.2. Trapping observables 
The theory discussed above can be extended to include trapping on a lattice with 

two types of chromophore. The approximation developed for this case is valid for any 
donor concentration but for only low trap concentration. (Loring et al. 1984 b). This 
modification makes the previous theory applicable to a larger group of experiments. 
Transport in the presence of traps is intrinsically interesting and must be understood 
for the practical reason that low-concentration traps are necessarily present in crystals 
of all types. For example, chemical (Gentry and Kopelman 1983, Gentry 1983, 
Kopelman 1981, Smith et al. 1977, Colson et al. 1977) and defect (Blott et al. 1978) traps 
have been studied in molecular crystals, and chromium dimer traps have been studied 
in ruby (Imbush 1967). 

Transport and trapping of excited states have been studied in a variety of mixed 
molecular crystals using steady-state optical experiments. (Gentry and Kopelman 
1983, Gentry 1983, Kopelman 1981, Smith et al. 1977, Colson et al. 1977). It is generally 
found that for low trap concentration the fraction of luminescence from the traps is 
strongly dependent on donor concentration. For low donor concentrations, the 
relative trap luminescence increases slowly with increasing donor concentration until a 
characteristic concentration is reached at which trapping becomes very efficient and a 
substantial fraction of the total luminescence comes from the traps. This effect is easy to 
interpret qualitatively for a system in which the trap concentration is low and 
interactions are of short range, so that most trapping events are preceded by a series of 
donor-donor hops. At low donor concentrations, most excitations will be restricted to 
small clusters of donors and little trapping will occur. As the donor concentration is 
raised, a concentration will be reached at which the donor system is sufficiently 
connected that paths of interacting donors will lead to most traps, and most of the 
excitations will be trapped. Thus, measurements of the relative trap luminescence at 
fixed low trap conceutration as a function of donor concentration will yield 
information about the extent of donor-donor transport in the system. 

I(c,,, cT), the integrated trap luminescence normalized by the sum of the integrated 
luminescence from donors and traps, can be calculated in a straightforward way from 
the Green function for the transport problem. Here cD and cT are the fraction of sites 
occupied by donors and traps, respectively. Since I(cD, cT) is a steady-state observable it 
can be calculated directly from the Laplace transform of the Green function, 
eliminating the need for numerical Laplace inversion. 

Figure 12 shows a comparison between the continuum trapping theory of Section 3 
(Loring et al. 1982 a, b, Loring and Fayer 1982) and the lattice theory. Let w(r) and v(r) 
be the donor-donor and donor-trap transfer rates, respectively, while a / R  is the ratio of 
the lattice spacing to the interaction length. Curve L in figure 12 (a) shows 1(cD, cT) for a 
square lattice, cT= lop3, w(T)= to()= z, '(R/r)14, a /R  =0.6, and curve L in figure 12(b) 
shows I(cD, cT) for the same system with a/R = 04. The curve labelled C in each figure is 
a calculation from the continuum theory with the same number densities of donors and 
traps. The two theories agree at small values of cD and this agreement improves as the 
interaction length R becomes large relative to the lattice spacing. Figure 12 (c) shows 
the same calculations as figure 12 (a) and (b) with transfer rates w(r) = v(r) = z; 1(R/r)6. 
(Note that for a given value of a/R, w(a) will be much larger for the transfer rate of figure 
12 (a) and (b) than for the transfer rate of figure 12 (c). The discrepancies between the 
lattice and continuum results can be large even for this longer-ranged transfer rate. 
These figures indicate that the application of a continuum theory to experiments on 
mixed crystals may be inappropriate unless the interaction length is very large relative 
to lattice parameters. 
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0 0.5 I 

Figure 12. Comparison of I(cD, cT), the integrated trap fluorescence normalized to the sum of 
the trap and donor fluorescence, for the lattice (L) and the continuum (C) for a square 
lattice of spacing a. (a) cT= 
w(r)= u(r) = ti '(R/r)14; a/R =0.4. (c) Curves C1 and L1 have the same parameters as (b) but 
with w(r) = u(r) = ti ' (R/r)6.  Curves C2 and L2 have the same parameters as (a) but with 
w(r) = u(r) = zi '(R/r)6.  The continuum and lattice theories agree only for very low cD and 
small a/R. 

w ( r ) = u ( r ) = ~ ; ' ( R / r ) ~ ~ ;  a/R=0.6.  (b) cT= 

Singlet and triplet energy transport and trapping in an effectively two-dimensional 
system (peI;deuteronaphthalene/naphthalene/betamethylnaphthalene mixed crystals) 
has been extensively studied by Kopelman and co-workers (Gentry and Kopelman 
1983, Gentry 1983, Kopelman 1981). In our designation, naphthalene is the donor and 
betamethylnaphthalene is the trap. Measurements on singlet excitation transport on 
this system by Gentry and Kopelman (1983) are depicted in figure 13 (circles). cT could 
not be kept exactly constant for these measurements, but varies from 3 x to 
1 x The squares in figure 13 are the result of a lattice calculation of I(cD,cT) for a 
square lattice, w(r) = v(r) = z; '(R/r)14, and a/R = 0.6. We have chosen an orientationally 
averaged octupole-octupole transfer rate because the transition dipole of naphthalene 
is known to be small and cannot account for the pure naphthalene crystal exciton band 
structure (Craig and Walmsley 1968). The octupole-octupole term is the next 
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I 

I 

0.5 4 
0 I 

I o !  I P I  I I I I 1  I I 

0 0.5 

c D  

Figure 13. The filled circles are measurements of singlet excitation transport, I(cD, cT), in mixed 
naphthalene crystals at 4.2 K by Gentry and Kopelman (1983). The squares are calculated 
for a square lattice with the c, values given by Gentry and Kopelman. alR=0.60 and 
w(z)=u(r)=z; The calculated points do not lie on a smooth curve because of the 
variation in cT, which ranges from 3 x to 1 x 

symmetry allowed term in a multipolar expansion of the intermolecular interaction 
(Craig and Walmsley 1968). The calculated points do not lie on a smooth curve as in 
figure 12 because of the variation in trap concentration. The error bars on the data 
increase with increasing I(c,,, cT) because of difficulties in extracting the naphthalene 
fluorescence from the betamethylnaphthalene phonon sideband, which overlaps it 
(Gentry and Kopelman 1983, Gentry 1983). The error bars on the three points at 
highest concentration are larger than the error bar on the point at cD = 0.72 
(R. Kopelman, personal communication). Within the experimental uncertainty, the 
calculated results and the data are in good agreement. 

The agreement between the calculation and the data should not be interpreted as a 
proof that an incoherent hopping model is a valid description of energy transfer in 
naphthalene at 4.2K. It is conceivable that the model applies for low donor 
concentration (strong spatial disorder) but that transfer is partially coherent at high 
donor concentration. The fact that a master equation approach may be least applicable 
at high cD for low-temperature experiments may account for the discrepancy between 
data and calculation for the two points with highest cD in figure 13. The resolution of 
questions concerning the nature of energy transfer in mixed molecular crystals at low 
temperature must await theories that take into account incoherent phonon-assisted 
hopping among molecules with different site energies and the possibility of partially 
coherent transfer. The theory discussed briefly in this section will be applicable without 
ambiguity to energy and charge-carrier transfer in mixed crystals at higher tempera- 
tures where an incoherent hopping model is known to be valid. 
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6. Concluding remarks 
In this paper we have discussed recent developments in the field of excitation 

transport in disordered systems. While we presented the theoretical aspects of this 
subject in terms of excitation transport, the methods described here also apply to 
electron transport in disordered crystals or amorphous materials. For these systems, 
experimental observables such as the a.c. conductivity can be calculated from the 
diagrammatic theories of transport. 

In another paper (Ediger and Fayer 1984) recent progress is discussed in the study 
of finite-volume, excitation-transport systems. These systems are characterized by 
chromophore distributions which are not spatially homogeneous at microscopic 
dimensions. The combination of an accurate theory and careful experiments can 
provide information about the spatial extent of chromophore distributions, e.g., the 
average radius of gyration of an isolated polymer coil in a polymer blend (Ediger et al. 
1985). 

The advances discussed in this article have been both theoretical and experimental. 
The combination of new time-resolved experimental techniques with an increasingly 
sophisticated approach to the complex statistical mechanical problem has increased 
our depth and range of understanding. The excitation-transport process is not 
generally diffusive. For systems involving a random distribution of intermolecular 
distances, excitation transport and trapping cannot be described by simple rate 
constants. This can have important implications. For example, in photochemistry, 
complex reaction schemes involving energy transfer generally employ energy-transfer 
rate constants which should actually be time-dependent rate functions. 

The work described here addressed the incoherent transport of excitations in 
disordered systems. For many situations we have a quite complete understanding of 
transport processes. However, there are a great number of important questions which 
remain unanswered. For example, on what time scale is a master equation the proper 
description of the system? The master equation describes the flow of probabilities 
according to classical mechanics. On a fast enough time scale, quantum mechanical 
probability amplitudes, rather than probabilities, must come into play. In a highly 
concentrated system, is the initial condition a delocalized state which rapidly damps 
into a localized incohereht excitation? If so, how fast does the damping take place? The 
master equation applies on a time scale that is long compared with this. Questions such 
as these, and problems involving the temperature dependence of transport in 
disordered systems and the role played by energy inhomogeneity, combine to form a 
related set of fundamental problems which remain unanswered. 
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